Introduction to RFID - Backscatter coupling

Backscatter Coupling (3.2.2)

We know from the field of RADAR technology that electromagnetic waves are reflected by objects with dimensions greater than around half the wavelength of the wave. The efficiency with which an object reflects electromagnetic waves is described by its reflection cross-section. Objects that are in resonance with the wave front that hits them, as is the case for antenna at the appropriate frequency for example, have a particularly large reflection cross-section.

Picture: Operation principle of a backscatter transponder

Power P1 is emitted from the reader's antenna, a small proportion of which (free space attenuation) reaches the transponder's antenna. The power P1' is supplied to the antenna connections as HF voltage and after rectification by the diodes D1 and D2 this can be used as turn on voltage for the deactivation or activation of the power saving "power-down" mode. The diodes used here are low barrier Schottky diodes, which have a particularly low threshold voltage. The voltage obtained may also be sufficient to serve as a power supply for short ranges.

A proportion of the incoming power P1' is reflected by the antenna and returned as power P2. The reflection characteristics (= reflection cross-section) of the antenna can be influenced by altering the load connected to the antenna. In order to transmit data from the transponder to the reader, a load resistor RL connected in parallel with the antenna is switched on and off in time with the data stream to be transmitted. The amplitude of the power P2 reflected from the transponder can thus be modulated (à modulated backscatter).

The power P2 reflected from the transponder is radiated into free space. A small proportion of this (free space attenuation) is picked up by the reader's antenna. The reflected signal therefore travels into the antenna connection of the reader in the "backwards direction" and can be decoupled using a directional coupler and transferred to the receiver input of a reader. The "forward" signal of the transmitter, which is stronger by powers of ten, is to a large degree suppressed by the directional coupler.

The ratio of power transmitted by the reader and power returning from the transponder (P1 / P2) can be estimated using the radar equation (for a more detailed explanation, please refer to the chapter 4 "Physical Principles" of the RFID-handbook).